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ABSTRACT

This pilot study assessed the feasibility of relying on Land-
sat multispectral scanner data for inventorying vegetables
grown in mucklands, in variably shaped, variably sized fields.
Classification of muck land vegetables using a Euclidean dis-
tance classifier and a parallelepiped classifier was perform-
ed with reasonable accuracy (generally over 60%) based on
only one date of Landsat data. Prior canonical and-principal

..component analyses did not improve the classification accura-
cy but did reduce the dimensionality of the data. \

.....•"""
INTRODUCTION

Mucklands are important vegetable-growing areas in New York
and other states. The area of muckland vegetables in New
York is approximately 11,000 hectares (27,000 acres), which
is nearly 40% of the total area of vegetables grown for fresh
produce and 18% of the total area in vegetables.

The ultimate goal of this investigation is to develop an op-
erational approach to monitoring the area of vegetables in
New York mucklands. As envisioned, this would involve: (1)
delineation of cultivated mucklands based on a priori infor-
mation, (2) determination or development of the most effec-
tive algorithm for identifying different vegetables, and (3)
development of the most effective procedure for measuring the
area of the different vegetables each season.

The aim of the work described here was to address the second
objective by determining the feasibility of distinguishing
different vegetables with multispectral scanner data acquired
by the Landsat satellites. Emphasis was placed on Landsat
MSS data because they are acquired at regular or near-regular
intervals, and because their basic cost would be lower than
that of aircraft data for surveying mucklands scattered over



the state. (As the cost of Lundsat duta rises, this may
change.) Moreover, Landsat MSS data have been shown to be
useful in crop surveys (e.g., Bizzell et al., 1975; Richard-
son et al., 19771 Hanuschak et al., 1979; NASA, 1979; Ryerson
et al., 1979 and 1981; AgRISTARS Progrum Support Staff, 1982).

In general, most cropping studies have focused on large area,
grain crops (Bizzell et al., 1975; NASA, 1979). Ryerson et
al. (1979 and 1981) have dealt with the development of opera-
tional procedures for estimating the area of potatoes and
beans in eastern Canada; however, they did not consider muck-
land vegetables.

MUCKLAND VEGETABLES

Found in virtually any climate, mucklands are characterized
by shallow to deep, very poorly drained, organic soils, or
"Histosols" (Soil Survey Staff, 1975). The soils are gener-
ally level or gently sloping, with a seasonally high water
table. Permeability may be rapid in well-decomposed muck and
variable in peaty materials. Prolonged wetness and rapid de-
composi tion of the organic materials are the major limi ta--
tions for farming. If adequately managed, however, muck
soils are among the most productive, being well suited to in-
tensive cultivation of row or specialized vegetable crops.
The type of crop grown will be governed largely by climate.

A survey of muck land vegetables imposes severe constraints
·on satellite remote sensing systems. Water management of
cultivated mucklands requires intensive surface and subsur-
face drainage. The grid of drainage canals delimits distinct
field units, which are commonly smal~, narrow rectangular
strips of variable orientation (Fig. 1). Field cropping man-
a~ement is such that one or many adjacent strips may be plant- \-
ed in a single crop. Although the individual field units are
normally uniform in shape, at least one boundary of a bl&ck
o£ units may be quite irregular if the boundary conforms with
the natural boundary of the muckland.

METHODS AND MATERIALS
General Approach
An 11 July 1981 Landsat computer-compatible tape for central
New York (scene 02236215030) was selected on the basis of a
crop calendar and the available Landsat scenes. This tape
was analyzed in batch mode on Cornell University's IBM 3701
168 computer, using a series of multispectral data analysis
routines developed at the Office of Remote Sensing of Earth
Resources (ORSER), Pennsylvania State University. A 1977
version of the ORSER routines was used (Borden et al., 1977),
the routines having been modified and supplemented over the
years for operation on Cornell's system.

The Landsat data were related to field crop records supplied
by the New York Crop Reporting Service. The pilot area en-
compassed 26 fields in Madison County, N.Y. (Table 1). The
fields ranged in size from less than 1.0 to nearly 16.0 hec-
tares. Field crop information was transferred to 1:24,000
scale U.S. Geological Survey topographic maps of the area
(Canastota, Cleveland, Jewell and Manlius). Landsat bright-
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ness maps (ORSER "NMAPs"), geometrically corrected to a scale
of 1:24,000, were generated for data matching. Attempts at
unsupervised classification through a clustering algorithm
produced poor results, an4 the analysis concentrated on super-
vised classification. Two types of supervised classifiers
were used: "CLASS," a Euclidean distance classifier, and
"PPO," a parallelepiped classifier.
Classification Routines
In ORSER's CLASS routine, classification of pixels is based
on the nearest category mean. Each Landsat pixel is repre-
sented by four spectral values, which form a single vector or
point in four-color space. The means of the four spectral
values of the pixels which represent the different categories
(e.g., onion or potato) in the scene are estimated on the
basis of a priori or training set data; the latter being sta-
tistics derived from a sample of known pixels. Each category
is thus represented by four mean spectral values or a cen-
troid in four-color space. For classification, all pixels,
including those used for training, are assigned to the near-
est category centroid; they are classified as the centroid
is classified if and only if they fall within a specified
"critical distance" from the centroid. In ORSER, the criti-
cal distance is a ~ingte value for each category. It is ar-
bitrarily defined, generally on the basis of the standard
deviations about each category's mean spectral values.

In the present study, four categories of cultivated muck lands
,occurred in the study area: corn, onion, potato and abandon-
ed fields. Four training areas were initially selected for
each category. Classification was performed using the mean
spectral values of the training areas for each category, and
a critical distance calculated as the square root of 'the sum
of the squared standard deviations about the mean spectral
values. This was tried using several different combinations
of training areas for the four categories. The best re~ults

_were obtained by splitting the categories (Table 1); corn,
onion and potato were each represented by two subcategories
of two training areas each, and abandoned fields were repre-
sented by three subcategories of two training areas each
(e.g., two training areas of "corn-I" and two of "corn-2").

Final implementation of the CLASS routine, which recognized
the nine subcategories and a separate category for water, was
performed in two steps. The first step used the mean spec-
tral values and critical distances derived from standard dev-
iations, as described previously. This approach classified
all pixels into 11 classes: the nine subcategories, water
and "other." The second and final step in classification
relied on the results of the first step. The first classifi-
cation output provided the Euclidean distances of separation
among the centroids of the classified pixels. For the second
classification, the critical distance for each class was re-
calculated as the average half distance between that class
and all other classes.

Similar to other parallelepiped classifiers, implementation
of ORSER's PPO is performed by defining the maximum and mini-
mum spectral values for each category. Any pixel having val-
ues which fall within the parallelepiped defined for a certain
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category will be classified as that category, but only if the
pixel values fall within only one category's parallelepiped.
Pixels falling within more than one parallelepiped (i.e.,
overlapping parallelepioeds) will be classified as "confused."
Parallelepipeds for the -s'tudy area's nine subcategories and
water were defined from the histograms of the spectral values
of the training areas. These limits were refined until the
best classification of training and testing area pixels was
obtained.

In an effort to improve the accuracy of classification, pix-
els in the study area were subjected to canonical and princi-
pal component analyses prior to both CLASS and PPD classifi-
cation. These analyses are described in a number of refer-
ences (e.g., Morrison,. 1976; Podwysocki et al., 1977; Jenson
and Waltz, 1979).

RESULTS

The results of supervised classification using a Euclidean
distance classifier, CLASS, and a parallelpiped classifier,
PPD, with and without prior canonical or principal component
transformations, are reportep in Tables 2 through 5. The
classifiers were applied to nontransformed data (labeled 0 in
tables) and to transformed data from one to four canonical
(Tables 2 and 4) or principal component (Tables 3 and 5) axes.

Reported in the tables is how the pixels representing each
category (cover type) were classified--pixels used for train-

.ing (upper half of tables) as well as known pixels set aside
for testing (lower half). The percentages of training and
testing pixels that were classified correctly are also re-
ported along with the percentages of training and testing
pixels that remained unclassified. The percentages of pixels

.·that were classified incorrectly are the complements to these\
percentages and are not reported. In Tables 4 and 5 ,~e
percentages of pixels classified as "confused" by the paral-

~lelepiped classifier are also reported. This represents a
speci~l case of an incorrect classification, since a confused
pixel is one classified as falling within the parallelepipeds
of at least two categories, one of which might be correct.

DISCUSSION

The results are both promising and interesting. Using a sin-
gle date of Landsat MSS data, it was possible to classify
nontransformed pixels of muckland categories with accuracies
ranging from 64% to 100% for training data and a-<t% to".3.9-%for
testing data. Although prior canonical or principal compon-
ent analyses produced little or no increase in accuracy over-
all, these transformations did improve the classification of
some categories and they did allow significant reduction in
dimensionality, generally to two axes.

Of particular interest is that classification accuracies with
four axes of transformed data were substantially lower than
classification accuracies with four spectral axes of nontrans-
formed data. This outcome would not be possible if the class-
ification parameters had not varied as the number of axes
changed. Because of the specific limitations of the classifi-
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cation routines and the nature of the training data, however,
the parameters were varied for each classification trial in
an attempt to optimize the classification for each case.

As pixel values from th~ second, third and fourth canonical
or principal component axis are added to those from the first
axis for classification, the range in values may expand ap9re-
ciably. Implementing the Euclidean distance classifier to
operate on an increased number of axes of transformed data
would thus require that the critical distance--a single val-
ue--be increased; otherwise an increasing number of pixels
would remain unclassified. Increasing the critical distance
to accommodate 'each added axis would likely decrease the re-
sultant accuracy.

Accommodating additional axes would not affect the parallele-
piped classifier in this manner, since the upper and lower
limits for each dimension of a parallelepiped are selected
independently. Adding a new dimension to a parallelepiped in
order to incorporate a new axis in the classification would
have no effect on the other dimensions. With the parallele-
piped classifier, the decreased accuracies with additional
axes are likely to have been caused by training areas of
spectrally similar categories or training areas containing a
number of incorrect pixels. In essence, the canonical trans-
formation operates to separate pixels of different training
areas 1 but if the different categories were spec'\:.rallysimi-
lar or if some pixels were originally associated with the
~~ong category, error might eventually arise. Any error
would be most pronounced in the third and fourth canonical
axes. Although the principal component analysis operates on
all data rather than ju.st the training areas, the effect
would have been the sa~e. In this study, the same training
areas were used for classification with both canonical and
principal component analyses.

Although a more powerful classifier (e.g., maximum likelihood
or an improved minimum distance classifier) might provide im-
proved classification, the sensitivity of ORSER classifiers
was observed, to an extent, serendipitously. Splitting the
categories to achieve increased accuracy was performed empir-
ically. Yet the subcategories offering the greatest improve-
ment, corn and abandoned fields, were subsequently found to
be physically different. With corn, the two subcategories
represented fields having different densities of drainage
canals; with abandoned fields, the three subcategories repre-
sented fields having drainage canals, no canals or trees.

CONCLUS IONS

Classification of muckland vegetable categories in New York
could be performed with reasonable accuracy using only one
date of Landsat MSS data. Canonical and principal component
analyses did not improve the classification accuracy but did
reduce the dimen~ionality of the data.

Future work with these and other muck land vegetable categor-
ies should consider temporal (multi-date) data and possibly
other enhancements (e.g., ratios) and classifiers (e.g., max-
imum likelihood). Improved accuracy should also accompany the
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use of thematic mapper data from Landsat-4 (CORSPERS, 1976).
This is assuredly true as regards the improvement in spatial
resolution, though the value of the different spectral bands
might first be confirmea.through field study.
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. Figure 1. Portion of muckland vegetable study
area in Madison County, New York

Table 1. Number of fields of each cultivated
muckland used in classification.

COVER NO. FIELDS IN NO. FIELDS IN TOTAL
TYPE TRAINING SETS TESTING SETS FIELDS

Corn 4* 2 6
Onion 4* 2 6
Potato 4* 2 6
Abandoned 6** 2 8

26

* Two subcategories of crop, two fields each.
** Three subcategories of cover type, two fields each.
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Table 2. Supervised classification of pixels using a Euclidean distance
classifier with and without prior canonical transformation.

CLASSIFIED PIXELS

COVER TYPE

CORN

NUMBER OF AXES*
01234

ONION

NUMBER OF AXES
01234

POTATO

NUMBER OF AXES
01234

ABANDONED

NUMBER OF AXES
o 1 2 3 4

TO'l'AL
PIXELS

I
(Xl
I

TRAINING SETS:

Corn 25 27 28
Onion 0 0 0
Potato 2 0 2
Abandoned 3 20 2

23 17

o 0
1 1

2 2

o
58

o
o

o 7
58 . 58

o 0
o 0

o
57

o
o

o 4
56 0
o 26
o 2

3

o
27

6

4

o
27

5

7

o
28

4

4

o
24

o

8

o
2

52

9

o
5

34

o
o
3

52

7

o
3

48

7 •

o
2

42

39

58
32
60

Correct (%) 64 69 72 60 44 100 100 100 98 97 81 84 84 88 75 87 57 87 80 70
Unclass.(%) 5 0 0 5 28 0 0 0 2 3 6 0 0 0 16 5 0 2 10 27

TESTI NG SETS:

Corn 18

Onion 0
Potato 0
Abandoned 2

6 18
3 3
1 4
2 2

13 11 6

2 4 29
320
110

7

30
o
o

5
29
o
o

605
28 28 4
o 0 19
o 0 11

477
000

18 23 20
11 16 17

6 0
o 0

14 7
8 25

17
o

13

30

3

o
6

24

3

o
7

20

1

o
6

11

34
33

33

43
Correct (%) 53 18 53 38 33 88 91 88 85 85 58 54 70 61 42 58 70 56 46 26
Unc1ass. (%) 15 0 3 15 47 0 0 3 9 3 21 3 0 0 33 12 0 2 12 53

* Denotes the number of canonical axes used in classification, with 0 being the classification
of nontransformed data. Cumulative variation accounted for by the first through fourth axis
was-:-95.8%, 99.8%, 99.·9% and 100%.
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Table 3. Supervised classification of pixels using a Euclidean distance
classifier with and without prior principal component transformation.

CLASSIFIED PIXELS

CORN ONION POTATO ABANDONED

NUMBER OF AXES* NUMBER OF AXES NUMBER OF AXES NUl-mER OF AXES TOTAL
COVER TYPE 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 PIXELS

TRAINING SETS:

Corn 25 27 20 20 18 0 0 0 0 0 4 3 6 5 6 8 9 13 11 9 • 39
Onion 0 0 0 0 0 58 58 58 57 55 0 0 0 0 0 0 0 0 0 0 58

I Potato 2 0 2 1 1 0 0 0 0 0 26 26 28 26 25 2 6 1 1 2 32
1.0
I Abandoned 3 22 4 3 2 0 0 0 0 0 2 6 3 1 0 52 32 53 49 45 60

Correct ( %) 64 69 51 51 46 100 100 100 98 95 81 81 88 81 78 87 53 88 82· 75
Unclass. (%) 5 0 0 8 15 0 0 0 2 5 6 0 3 12 12 5 0 0 12 21

TESTING SETS:

Corn 18 11 18 13 12 6 7 6 6 6 5 4 7 6 5 0 12 3 2 2 34
Onion 0 3 3 1 1 29 30 29 28 27 4 0 0 0 0 0 0 0 0 0 33
Potato 0 0 4 1 1 0 1 1 0 0 19 16 23 19 17 7 16 5 6 5 33
Abandoned 2 4 6 2 2 0 0 0 0 0 11 12 14 9 9 25 27 18 18 14 43

Correct (%) 53 32 53 38 35 88 91 88 '85 82 58 48 70 58 52 58 43 42 42 33
Unclass. (%) 15 0 12 20 26 0 O~ 3 12 15 21 0 0 21 30 12 0 12 33 42

* Denotes the number of principal component axes used in classification, with 0 being the
classification of non trans formed data. Cumulati ve variation accounted for by the first through
fourth axis was: 85.9%, 94.2%, 99.0%.)1nd 100%.
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Table 4. Supervised classification of pixels using a parallelepiped
classifier with and without prior canonical transformation.

CLASSIFIED PIXELS
CORN ONION POTATO ABANDONED ,-----

NUMBER OF AXES* NUMBER OF AXES NUl'IEEROF AXES NUMBER OF AXES 'rO'l.'AL
COVER TYPE 0 1 2 3 4 0 1 2 3 4 ,0 1 2 3 4 0 1 2 3 4' PIXELS

TRAINING SETS:

Corn 13 7 13 15 13 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 39
Onion 0 0 0 0 0 19 27 23 20 18 0 0 0 0 0 0 0 0 0 0 58
Potato 2 2 3 2 2 0 0 0 0 0 12 3 22 18 15 0 2 0 0 0 • 32

I Abandoned 2 1 1 1 1 0 0 0 0 0 0 1 3 1 0 24 14 28 21 18 60
I-'
0 Correct (%) 33 18 33 38 33 33 47 40 34 31 38 9 69 56 47 40 23 47 35 30
I Unclass. ( %) 38 8 28 49 51 55 12 40 52 62 25 0 9 31 41 53 3 37 57 3

Confused (%) 26 74 36 13 10 12 41 21 14. 7 31 78 12 6 9 3 70 10 5 65

TESTI NG SETS:

Corn 10 4 12 7 7 2 2 2 2 3 0 1 1 0 2 0 0 0 0 0 34
Onion 0 0 0 0 0 19 ·.20 19 17 12 0 0 0 0 0 0 0 0 0 0 33
Potato 2 5 2 2 3 0 0 0 0 0 10 3 11 8 8 1 0 3 4 2 33
Abandoned 2 1 2 1 1 0 0 0 0 0 6 2 8 8 5 8 14 8 8 7 43
Correct (%) 29 12 35 21 21 58 61 58 52 36 30 9 33 24 24 19 33 19 19 16
Unclass. (%) 47 8 29 56 56 39 15 36 42 58 54 0 33 46 54 58 9 49 56 67
Confused (%) 18 71 26 18 9 3 24 6 6 6 6 76 15 12 6 5 51 9 5 2

* Denotes the number of canonical axes used in classification, with 0 being the classification
of nontransformed data. Cumulative variation accounted for by the first through fourth axis
was: 95.8%, 99.8%, 99.9% and 100%.
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1Table 5. Supervised classification of pixels using a parallelepiped classifier
with and without prior principal component transformation.

CLASSIFIED PIXELS
CORN ONION POTATO ABANDONED

NUMBER OF AXES* Nm1BER OF AXES NUMBER OF AXES NUHBER OF AXES 'rOTAL
COVER TYPE 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 PIXELS

TRAINING SETS:
Corn 13 3 10 11 12 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 39
Onion 0 0 0 0 0 19 20 22 25 18 0 0 0 0 0 0 0 0 0 0 58
Potato 2 0 3 2 2 0 0 0 0 0 12 0 13 13 13 0 2 0 0 0 32
Abandoned 2 3 3 4 2 0 0 0 0 0 0 0 1 1 0 24 15 21 17 16 . 60
Correct (%) 33 8 26 28 31 33 34 38 43 31 38 0 41 41 41 40 25 35 28 27

I Unclass. (%) 38 15 28 46 54 55 14 36 48 66 25 0 16 22 34 53 2 35 50 62f-' Confused (%) 26 77 46 26 15 12 52 26 9 3 31 94 34 31 19 3 68 18 13 8I-'
I

TESTI NG SETS:
Corn 10 1 14 12 11 2 1 1 3 3 0 0 0 0 0 0 0 0 0 0 34
Onion 0 0 0 0 0 19 _.19 19 15 13 0 0 0 0 0 0 0 0 0 0 33
Potato 2 1 7 3 3 0 0 0 0 0 '10 0 11 13 11 1 1 1 1 1 33
Abandoned 2 0 5 3 2 0 0 0 0 0 6 0 7 3 2 8 15 8 9 10 43
Correct (%) 29 3 41 35 32 58 58 58 46 39 30 0 33 39 33 19 35 19· 21 23
Unclass. (%) 47 9 24 35 44 39 12 36 51 58 54 0 18 39 46 58 7 35 58 56
Confused (%) 18 85 32 21 15 3 30 6 3 3 6 94 24 9 6 5 58 21 7 5

* Denotes the number of principal component axes used in classification, with 0 being the
classification of nontransformed data. Cumulative variation accounted for by the firs t
through fourth axis was: 85.9%, 94.2%, 99.0% and 100%.
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